The crossing number of pancake graph P4 is six
نویسندگان
چکیده
The crossing number of a graph G is the least number of pairwise crossings of edges among all the drawings of G in the plane. The pancake graph is an important topology for interconnecting processors in parallel computers. In this paper, we prove the exact value of the crossing number of pancake graph P4 is six.
منابع مشابه
META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملOn the genus of pancake network
Both the pancake graph and star graph are Cayley graphs and are especially attractive for parallel processing. They both have sublogarithmic diameter, and are fairly sparse compared to hypercubes. In this paper, we focus on another important property, namely the genus. The genus of a graph is the minimum number of handles needed for drawing the graph on the plane without edges crossing. We will...
متن کاملThe crossing number of the strong product of two paths
Let Pm Pn be the strong product of two paths Pm and Pn. In 2013, Klešč et al. conjectured that the crossing number of Pm Pn is equal to (m − 1)(n − 1) − 4 for m ≥ 4 and n ≥ 4. In this paper we show that the above conjecture is true except when m = 4 and n = 4, and that the crossing number of P4 P4 is four.
متن کاملOn the domination polynomials of non P4-free graphs
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
متن کاملThe distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ars Comb.
دوره 131 شماره
صفحات -
تاریخ انتشار 2017